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The dynamic chavacteristics of the MSRE weve
calculated for opervation with #°U and U fuels.
The analysis included calculation of the transient
response for rveactivity perturbations, frequency
response for veactivity pervturbations, stability,
and sensitivity to parameter variations. The
calculations showed that the system dynamic be-
havior is satisfactory for both fuel loadings.

I. INTRODUCTION

The dynamic characteristics of the Molten-Salt
Reactor Experiment (MSRE) were studied care-
fully prior to the initial ***U fuel loading in 1965
and again prior to the ***U fuel loading in 1968.
The first objective of these studies was to deter-
mine the safety and operability of the system. The
second objective was to establish methods of
analysis which can be used with confidence in
predicting the dynamic behavior of future, high-
performance molten-salt reactors. To satisfy the
second objective, it was necessary to include
theoretical predictions of quantities amenable to
experimental measurement. The frequency re-
sponse results proved most useful for this pur-
pose.’

Several different types of calculations were
used in these studies. In general, they consisted
of calculations of transient response, frequency
response, stability, and parameter sensitivities.
Four considerations led to the decision to use
this many different types of analysis. These were:
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1. It is helpful to display system dynamic
characteristics from different points of view as
an aid in understanding the underlying physical
causes for calculated behavior.

2. Computer costs for the different types of
analysis were small compared to the expense of
preparing the mathematical models.

3. The calculations for comparison with exper-
iment (frequency response) were essential, but
they did not furnish sufficient information about
the system. :

4. The experience with a number of methods
provided insight on selecting methods which would
be most useful in analysis of future molten-salt
reactors.

23U fuel was

The analysis of the system with:
very similar to the analysis of the **°U-fueled
system. The modeling for the >**U study was
influenced slightly by results from dynamics
experiments on the *°U-fueled system and the
analysis for the ***U-fueled system took advantage
of some new methods developed after the com-
pletion of the first study.

This paper describes the mathematical models
used, the computational methods used, and the
results of the calculations. A companion paper1
gives results of dynamics experiments and com-
parisons with theoretical predictions.

Il. DESCRIPTION OF THE MSRE

The MSRE is a graphite-moderated, circula-
ting-fuel reactor with fluoride salts of uraniumé
lithium, beryllium, and zirconium as the fuel.
The basic flow diagram is shown in Fig. 1. The
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Fig. 1. MSRE basic flow diagram.

molten, fuel-bearing salt enters the core matrix
~at the bottom and passes up through the core in
channels machined out of 2-in. graphite blocks.
The 8 MW of heat generated in the fuel and trans-
ferred from the graphite raises the fuel temper-
ature from 1170°F at the inlet to 1210°F at the
outlet. When the system operates at low power,
the flow rate is the same as at 8 MW, and the
temperature rise through the core decreases. The
high-temperature fuel salt travels to the primary
heat exchanger, where it transfers heat to a non-
fueled secondary salt before reentering the core.
The heated secondary salt travels to an air-cooled
radiator before returning to the primary heat
exchanger.

Criticality was first achieved with **U fuel
(35 at.% **°U) in June of 1965. After 9006 equiva-
lent full power hours of operation, this uranium
was removed and the reactor was refueled with
2335 (91.5 at.% ***U) in October of 1968. Between
October 1968, and shutdown in December 1969,
an additional 4166 equivalent full power hours
were achieved with ***U fuel.

Dynamically, the two most important charac-
teristics of the MSRE are that the core is hetero-
geneous and that the fuel circulates. Since this
combination of important characteristics is un-
common, a detailed study of system dynamics and
stability was required. The fuel circulation acts
to reduce the effective delayed-neutron fraction,
to reduce the rate of fuel temperature change
during a power change, and to introduce delayed
fuel-temperature and neutron-production effects.
The heterogeneity introduces a delayed feedback
effect due to graphite temperature changes.

1l. SYSTEM MODELS
A. Neutronics

The point kinetics equations for circulating fuel
reactors were used with appropriate temperature-
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dependent reactivity feedback (see Sec. I1.C). The
equations are®:

@=<p°-BT)6n+< >6p+2 A;6¢; Ll (1)

dt A A

ddc; _ i 6c; Oc;(t - 7 )exp(-A;7;)

- A on - A;0c; - T, + T ,
(2)

where

on=deviation in neutron population from
steady state

6c; = deviation in concentration of the i’th pre-
cursor group from steady state

po = reactivity change in going from a circu-
lating fuel condition to a stationary fuel
condition

Br = total delayed-neutron fraction

B; = importance weighted delayed-neutron
fraction for the #’th precursor group

A = neutron generation time
8p = change in reactivity

\; = radioactive decay constant for the 7’th
precursor group

7. = fuel residence time in the core

7. =fuel residence time in the external loop.

L
The term 0p is given by

op = Op, +2 ;0T; ,
where

op, = reactivity change due to control-rod mo-
tion

a; = temperature coefficient of reactivity for
the #’th section (node) of the core

8T; = temperature change in the 7’th section
(node) of the core.

In some of the calculations (determination of
eigenvalues of the system matrix), it was neces-
sary to eliminate the time delay from the pre-
cursor equation. This was accomplished by
eliminating the last two terms from Eq. (2) and
defining an effective 3; as follows:

delayed neutrons emitted in core at steady state

Biett = P (total delayed neutrons emitted in the system at steady state) :
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Then, the approximate precursor equation is

ddci _ B
dt A

This formulation assumes that the fraction of the
precursors which decay in in-core regions is
constant during a transient. Comparison of fre-
quency response calculations using this approach
and an approach which explicitly treats circulating
precursor effects showed negligible differences in
the frequency range of interest.

Since the neutron population is proportional to
fission power, the units on 6n were taken to be
megawatts.

on - \;bc; . 3)

B. Power

An attempt was made to include the effect of
delayed gamma rays on the total power generation
rate. If we assume that the delayed gamma rays
are emitted by a single nuclide, then the appro-
priate equation is

dN
Ez'yn"w’ (4)

where

N = energy stored in gamma-ray emitters (in
MW sec)

y = fraction of power which is delayed
n = neutron population (in units of MW)

A= decay constant of gamma-ray emitter
(sec™).

The total power is given by
P=)N+(1-vymn . (5)

For these studies the value used for A and y
were 0.0053 and 0.066/sec, respectively.

C. Core Heat Transfer

The core heat transfer was modeled using a
multinode approach. The reactor was subdivided
into sections and each section was modeled using
the representation shown in Fig. 2. This model
was preferred over a model with a single fuel
lump coupled to a single graphite lump because
of difficulties in defining appropriate average
temperatures and outlet temperatures for a single
fluid lump model.* If the outlet temperature of a
single fluid lump model is assumed to be the same
as the average temperature, then the steady-state
outlet temperature is too low. If the average
temperature is taken as a linear average of inlet
temperature and outlet temperature, then it is
possible for outlet temperature changes to have
the wrong sign shortly after an inlet temperature
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Fig. 2, Model of reactor core region; nuclear power
produced in all three subregions,

change. The model using two fluid lumps circum-
vents these problems by providing an intermediate
temperature to serve as an average temperature
to use in the solid-to-liquid heat transfer cal-
culations. Also, the average temperature in the
second lump is a better representation of the
outlet temperature than the average temperature
of a single lump.

Since ~7% of the heat is generated in the gra-
phite by gamma ray and neutron interaction, the
graphite lump equation has an internal heat source
term. The equations are:

dt (MC)/ opP T [GTII(m) - 6Tfl]
hA)p
(MC)/ (6T, - - 87T)1] (6)
adTys K/a 1
a = oicy: Pt (671 - 6T2]
(rA)2
(MC;/ [6T¢ - 6T/l] (7
doTg _ K, (hA),‘l + (h-A)/2
at ~ (MC)s T (MC),
x[6T¢ - 6T)4] ®)
where

T = residence time

k = heat transfer coefficient for a lump
A = heat transfer area for a lump

M = mass

C = specific heat

K = fraction of total power

/1 = subscript indicating first fuel lump
Jf2 = subscript indicating second fuel lump

G = subscript indicating graphite.
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In most of the calculations, 9 sections of the
type shown in Fig. 2 were used giving a total of
27 lumps. The arrangement is shown in Fig. 3.
The fraction of the total power generated in each
lump was obtained from steady-state calculations
of the power distribution. The local temperature
coefficients were obtained for each region by
importance weighting the computed overall tem-
perature coefficients for fuel and for graphite.
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Fig. 3. Schematic diagram of 9-region core model.

D. Heat Exchanger and Radiator

The models for the heat exchanger and the
radiator were similar to the core heat transfer
models. The arrangement for a heat exchanger
section appears in Fig. 4. The equations for a
heat exchanger section are:
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Fig. 4. Model of heat exchanger and radiator section.

45_th£ - ;1-1-1 [674 (in) - 6Tu]

+<%Ac‘)r (67~ 6Tsl )
LI ;11_2 [67T1: - 6T12]

+((_Mh%11£2 (6T, - 6T ] (10)
s S50 -

+L@TZX4LC)IZTAZZ—) [5;}21 -8Tr]  (11)
dé;;zl - TLH [6T2 (in) - 6T21]

. (%))2;1 [6T, - 6Tai] (12)
dé;t"zz - —712; [6Ta1 - 6T2)

. (%))2; (67 - 6Ta1] . (13)

In some of the calculations, it was assumed that
the heat capacity of the air in the radiator was
negligible. (Terms T»; and T2 are used for the
air side of the radiator.) Ignoring the heat storage
in the air leads to the following heat balance:

(WC)21[Taz- Ta1(in)] = (A2 +hA2)(Tr - T21) , (14)

where W is the mass flow rate of the air.
If we assume 721 = [T'5 (in) + T22)/2, Eq. (14) be-
comes

(WC21)

(RA21 + hA22) I:2T21 - 2T9y (m)] = [TT - T21] . (15)
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Now, we write the equation in terms of incre-
mental quantities and assuming T»; (in) is constant
to obtain:

5T,
(WC)a
hAz; + hAa

This is then used for 67% in Eq. (11). The
schematic representation of this type of radiator
model appears in Fig. 5.

5T21 = (16)

1+2

"
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HEAT REMOVAL BY AIR STREAM
(ASSUMED PROPORTIONAL TO CHANGES IN )

Fig. 5. Model of radiator for assumed negligible air
heat capacity.

E. Piping

Several models were used to represent salt
transport in the piping in different stages of the
studies. The simplest model was a pure time
delay. From some calculations (eigenvalues of the
systems matrix) it was necessary to eliminate the
delay terms. They were represented by Padé
approximations® in those calculations. In some of
the more detailed calculations, the heat transfer
to the pipe walls was included. Since experimental
results’ obtained after the ***U study indicated
significant mixing in headers and piping in the
fuel stream, some calculations for the **°U fueled
system used a model of a mixing chamber at the
core outlet. This model consisted of the following
equation (a first-order lag):

asT _1

= == (0T, - oT) . (17)

F. Values of Important Parameters

Some of the important parameters computed
for the ***U and ***U loadings appear in Table I.

G. Overall System Model

The models for the subsystems were combined
to give an overall system model. Several different
overall system models were used in different
stages of the study. The model shown in Fig. 6
was used in the study of the ***U-fueled system.
This will be called the reference model. This
model resulted in a 44’th-order system matrix
with 4 time delays for heat convection and 6 time
delays for precursor circulation. Major modifi-
cations of this model which were used in some

TABLE I
Parameters Used in MSRE Dynamics Studies

Parameter 2%y 233y
Fuel reactivity coefficient (*F') -4.84 x 107° -6.13 x 10°
Graphite reactivity coefficient (°F™) -3.70 x 10~° -3.23 x 107°
Neutron generation time (sec) 2.4 x10°* 4.0 x10™*
Total effective delayed-neutron fraction (fuel stationary) 0.00666 0.0029
Total effective delayed-neutron fraction (fuel circulating) 0.00362 0.0019
Total fuel heat capacity (in core) (MW sec/°F) 4.19
Heat transfer coefficient from fuel to graphite (MW/ °F) 0.02
Fraction of power generated in the fuel 0.934
Delayed power fraction 0.0564
Core transit time (sec) 8.46
Graphite heat capacity (MW sec/°F) 3.58
Fuel transit time in external primary circuit 16.73
Total secondary loop transit time (sec) 21.48
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4.71-sec DELAY

8.67-sec DELAY

Fig. 6. Schematic representati

aspects of the study are listed below:

1. The mixing pot was not included in the early
studies for the >°U-fueled systems. It was added
after experimental results’ indicated significant
mixing of the fuel salt. '

2. For computing the eigenvalues of the sys-
tem matrix, each pure time delay for fluid trans-
port was replaced by a Padé approximation.
Effective delayed-neutron fractions were deter-
mined and Eq. (3) was used instead of Eq. (2).

3. In the models used in the MSFR code (see
Sec. IV), the heat exchanger and radiator models
were expanded. Instead of a single 5-node repre-
sentation for the heat exchanger, 10 sections (each
with 5 nodes) were used. Instead of a single 3-
node representation for the radiator, 10 sections
(each with 3 nodes) were used as with the heat
exchanger.

Calculations showed that results obtained with
the simpler heat exchanger and radiator models
gave good agreement with results obtained using
the larger models for these components.

IV. METHODS OF ANALYSIS
A. Transient Response

The transient response of the reactor system
was calculated for selected input disturbances
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on of the MSRE reference model.

(usually reactivity steps). The computer code
MATEXP® (a FORTRAN IV program for the IBM-
7090 or IBM-360) was used for these calculations.
MATEXP uses the matrix exponential technique
to solve the general matrix differential equation.
For the linear case, the general matrix differ-
ential equation has the form:

LAz +70 (18)
where

% = the solution vector
t = time

A = system matrix (a constant square matrix
with real coefficients)

Ft) = forcing function vector.
The solution of Eq. (18) is

% = exp(At)x (0) + fot explA(t - T)] Alm)dT . (19)

MATEXP solves this equation using a power
series for the evaluation of exp(At):
exp(Af) = I + (Af) + 3(At +. .. . (20)

In MATEXP, f(7) must be a step or representable
by a staircase approximation. For the nonlinear
case, the general matrix differential equation is

&

= Ax + DAX)x +F¢) , (21)
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