DATE: December 26, 1961
SUBJECT: MSRE - Analog Computer Simulation of the System With a Servo Controller
TO: G. A. Cristy
FROM: O. W. Burke

ABSTRACT

One purpose of this study was to determine whether the fuel salt temperature inside the reactor could be controlled with a closed-loop servo controller. An "on-off" type controller was demonstrated using four different control signals. The stability of the system when using the controller was of primary interest.

These studies indicated that the system was stable for large and relatively fast power demand changes when using the controller with any one of the four control signals.

NOTICE

This document contains information of a preliminary nature and was prepared primarily for internal use at the Oak Ridge National Laboratory. It is subject to revision or correction and therefore does not represent a final report. The information is not to be abstracted, reprinted or otherwise given public dissemination without the approval of the ORNL patent branch, Legal and Information Control Department.
CONTENTS

I. Introduction .. 3
II. Description of the System Simulated 3
III. Description of Controller 3
IV. Description of the Control Signals Used 3
 A. Control Signal No. 1, ξ_1 3-5
 B. Control Signal No. 2, ξ_2 5-6
 C. Control Signal No. 3, ξ_3 6
 D. Control Signal No. 4, ξ_4 6
V. Procedure and Results 6-7

Figures:
1. Basic Flow Diagram of MSRE System 8
2. Identification of Temperature Symbols 9-10
3. MSRE Design Point Data as of 12-13-60 11-12
4. Generator Circuit for ξ_1 13
5. Generator Circuit for ξ_2 14
6. Generator Circuit for ξ_3 15
7. Generator Circuit for ξ_4 16
8. Control Signal ξ_1, Nuclear Power and Mean Fuel Temperature in Reactor vs. Time 17
9. Control Signal ξ_2, Nuclear Power and Mean Fuel Temperature in Reactor vs. Time 18
10. Control Signal ξ_3, Nuclear Power and Mean Fuel Temperature in Reactor vs. Time 19
11. Control Signal ξ_4, Nuclear Power and T_0 vs. Time 20

Bibliography .. 21

Distribution .. 22-23
I. Introduction: It is desirable to provide a controller for controlling the fuel temperature inside the reactor. There are many control concepts that would do the job.

The decision was made to try a simple "on-off" controller. E. R. Mann of the Instrumentation and Controls Division proposed four control signals which have definite possibilities and suggested that they be demonstrated on the analog computer. This report covers the analog computer demonstrations.

II. Description of the System Simulated: A schematic flow sheet of the MSRE system is shown in Figure 1. The temperature symbols are identified in Figure 2. The design information used in these studies is listed in Figure 3. The analog computer diagram is filed in the Engineering and Mechanical Division print files on Drawings 40331 and 40332.

The simulation of the thermal system and nuclear system as used in these studies has been discussed in previous preliminary reports. There were two changes, however, that were significant. The temperature coefficient of reactivity of the graphite was changed from:

\[-2 \times 10^{-4} \frac{\Delta K}{\text{K-}^\circ\text{F}} \text{ to } -6 \times 10^{-5} \frac{\Delta K}{\text{K-}^\circ\text{F}}\]

and the total secondary salt loop transit time was changed from 13 seconds to 24.2 seconds.

III. Description of Controller: The controller simulated was a simple "on-off" servo controller. The rod drive motor was a constant speed motor, driving the rods at a constant velocity sufficient to change the reactivity at a rate of:

\[0.002 \frac{\Delta K}{\text{K-sec}}.\]

For the sake of simplicity, the rod worth was considered to be linear throughout the range used in these studies. The "time constant" of the controller was assumed to be 50 milliseconds. This "time constant" is the time required for the rod speed to attain 63% of full speed subsequent to receiving a demand signal to move the rods. The "dead band" of the controller was \[\pm 2^\circ\text{F}.\]

IV. Description of the Control Signals Used: The four different control signals used with the above described controller were as follows:

A. Control Signal No. 1, \[\varepsilon_1\]

The equation expressing \[\varepsilon_1\] is as follows:

\[\frac{1}{C} \varepsilon_1 = m a \left\{ \phi - (T_0 + T_1 + T_2 + T_3) - g(t) \right\} + n \left\{ (T_0 + T_1 + T_2 + T_3) - 2 T_{sp} \right\}\]
where,

\[G = \text{control signal gain factor or amplification factor}. \]

\[m, n, \text{and } a \text{ are constants that may be varied at will}. \]

\[\phi = \text{neutron flux} \]

\[T_{0r} = \text{Fuel salt temperature at the reactor outlet}. \]

\[T_{1r} = \text{Fuel salt temperature at the inlet to the reactor}. \]

\[g(t) = \lambda_2 \int_{0}^{t} \left[a \phi - (T_{0r} - T_{1r}) - g(t) \right] \text{dt} \]

This can be considered as a "reset mechanism." \[T_{sp} - \text{The desired mean fuel temperature in the reactor}. \]

The controlled variable in \(\xi_i \) is the mean fuel temperature in the reactor, \[\frac{T_{0r} + T_{1r}}{2} \]. This variable appears only in the second term of the control signal. If this term alone is used as the control signal, the system is unstable.

The first term in \(\xi_i \) can be considered as a high frequency band pass stabilizing mechanism. It merely compares the rate of production of nuclear power to the rate of addition of heat to the fuel salt as it passes through the reactor. Note that for steady state operation:

\[
\frac{d}{dt} \left[g(t) \right] = 0 = \lambda_2 \left[a \phi - (T_{0r} - T_{1r}) - g(t) \right]
\]

\[g(t) = a \phi - (T_{0r} - T_{1r}) \]

This insures that the first term in \(\xi_i \) will be zero for steady state operation whether the term:

\[\left[a \phi - (T_{0r} - T_{1r}) \right] \]

is zero or not. For this reason, the constant, "\(a \)" does not have to be reset for various power levels. If \(\xi_i \) exceeds the dead band
positively, rods will be inserted and if ε_i exceeds the dead band negatively, rods will be withdrawn. The analog computer diagram used to obtain ε_i is shown in Figure 4.

The temperature sensing elements are thermocouples attached to the walls of the pipes containing the fluids whose temperatures are to be measured. There is a time lag between the time at which a change in temperature of the fluid occurs and the time at which this change is reflected in the thermocouple output signal. This time lag varies with different thermocouple designs, pipe wall thicknesses, etc. The time constant for this lag in the salt temperature thermocouples was designated as τ_i and was considered to be 5 seconds.

The time constant of the $g(t)$ circuit was chosen as 10 times that of the thermocouple. This long time constant was necessary in order to get "reset action" and still not interfere with the stabilizing effect during transients.

The other three control signals are quite similar to ε_i and only their differences from ε_i will be pointed out in the following descriptions of these signals.

B. Control Signal No. 2, ε_2.

The equation expressing ε_2 is as follows:

$$\frac{1}{C} \varepsilon_2 = m \left\{ a \phi - f_a \left(T_o _a - T_i _a \right) \cdot g(t) \right\} + n \left\{ \left(T_o _r + T_i _r \right) \cdot e^{T_s _p} \right\}$$

where,

- $f_a = \text{air flow rate across the radiator}$
- $T_o _a = \text{outlet air temperature from radiator}$
- $T_i _a = \text{inlet air temperature to radiator}$

The time constant used for the air temperature sensing elements was 2.5 seconds and that used in the $g(t)$ circuit was 25 seconds ($\tau_3 = 2.5$ and $\lambda_4 = 0.04$).

Note that the controlled variable is the same as for ε_i. The stabilizing portion of the control signal is now formed by comparing the rate of production of power in the reactor to the rate of removal of power from the secondary salt by the air flowing across the radiator. Note that a multiplier is required in this circuit.
The analog computer diagram used to formulate ξ_2 is shown in Figure 5.

c. Control Signal No. 3, ξ_3.

The equation expressing ξ_3 is:

$$\frac{1}{G} \xi_3 = m \left\{ a \left[\phi \left(T_i - T_0 \right) \right] - g(t) \right\} + n \left(T_c - T_i \right)^2 T_{sp}$$

where,

$$T_i$$ = secondary salt temperature at the radiator inlet

$$T_0$$ = secondary salt temperature at the radiator outlet

The controlled variable is the same as that in ξ_j and ξ_2. The stabilizing circuit is formed by comparing the rate of power production in the reactor to the rate of power loss of the secondary salt as it flows through the radiator. No multiplier is required since the flow rate in the secondary salt system is constant.

The "time constant" potentiometer settings are the same as those used in ξ_j. The analog computer diagram used to obtain ξ_3 is shown in Figure 6.

d. Control Signal No. 4, ξ_4.

The equation describing ξ_4 is:

$$\frac{1}{G} \xi_4 = m \left\{ a \left[\phi \left(T_i - T_0 \right) \right] - g(t) \right\} + n (T_c - T_{sp})$$

This control signal is the same as ξ_3 except that a different controlled variable is used. The outlet fuel temperature from the reactor is the controlled variable. The analog computer diagram used to derive ξ_4 is shown in Figure 7.

V. Procedure and Results: The system without a controller was shown to be unstable subsequent to any appreciable perturbation. The system was also shown to be unstable when using the controller with only the second term in the above control signals.

The stability of the system with the above controllers was checked subsequent to large changes in the power demand or load. The changes in the load for the four runs, each using one of the four above described control signals to the controller, were not precisely equal in magnitude and rate of change. The change in load was accomplished by manually turning a potentiometer. Also, no attempt was made to get optimum settings for M and N in each case. Therefore, the results cannot be compared quantitatively. In later runs linear ramp load changes will be used, and optimum
values of M and N used, so that controllers can be compared. Recordings of the controlled variable and the neutron flux were made subsequent to a load change, while using each of the four control signals to the controller. The conditions for these runs were as follows:

A. Using ξ_1 as the control signal, M, as shown on the computer diagram, was set at .877 (quite arbitrarily) and N was set at 0.5. The load, or the heat removal rate by the air across the radiator, was set at approximately $\frac{1}{2}$ megawatt and the system permitted to stabilize. The load was increased from $\frac{1}{2}$ mw to 10 mw in 15 seconds, approximately at a constant rate. The curves obtained are shown in Figure 8. On all the curves only a relatively short time is shown. It can be seen that the curves are converging, which indicates stability.

B. Using ξ_2 as the control signal, M, as shown on the computer diagram, was set at 0.877 and N set at 0.5. The load was changed from approximately 1.6 mw to 10 mw in 17 seconds. The resulting curves are shown in Figure 9.

C. Using ξ_3 as the control signal, M, as shown on the computer diagram, was set at 0.25 and N was set at 0.5. The load was changed from approximately 1.6 mw to 10 mw in 13 seconds. The resulting curves are shown in Figure 10.

D. Using ξ_4 as the control signal, M, as shown on the computer diagram, was set at 0.50 and N was set at 1.00. The load was changed from approximately 1.6 mw to 10 mw in 11 seconds. The resulting curves are shown in Figure 11.

The conclusion reached was that the system would be stable using the controller with any of the four control signals.

It should be pointed out that the constants M and N on the actual installation could be changed over a considerable range. No attempt was made to get the optimum settings on the computer, due to time limitations.
IDENTIFICATION OF TEMPERATURE SYMBOLS

- T_f - Circulating fuel mean temperature in the reactor core.
- T_{f1} - Circulating fuel temperature at the outlet of the reactor core.
- T_{f2} - Circulating fuel temperature at the inlet to the primary heat exchanger.
- T_{f3} - Circulating fuel mean temperature in the primary heat exchanger.
- T_{f4} - Circulating fuel temperature at the outlet of the primary heat exchanger.
- T_{f5} - Circulating fuel temperature at the inlet to the reactor core.
- T_g - Mean temperature of the graphite in the reactor core.
- T_m - Mean temperature of the metal in the primary heat exchanger wall.
- T_{mp} - Mean temperature of the secondary salt in the primary heat exchanger.
- T_1 - Mean temperature of the secondary salt in the primary heat exchanger.
- T_{s1} - Secondary salt temperature at the outlet of the primary heat exchanger.
- T_{s2} - Secondary salt temperature at the inlet to the radiator.
- T_{s3} - Secondary salt temperature at the outlet of the primary heat exchanger.
- T_{s4} - Mean temperature of the secondary salt in the radiator.
- T_{s5} - Secondary salt temperature at the radiator outlet.
- T_{s6} - Secondary salt temperature at the inlet to the primary heat exchanger.
- T_{mr} - Mean temperature of the metal in the radiator.
- T_{hot} - Mean circulating fuel temperature in the "hot leg" of the primary system.
- T_{cold} - Mean circulating fuel temperature in the "cold leg" of the primary system.
- T_{ma} - Mean air temperature in the radiator.
Figure 2 (contd.)

\[T_{i,r} \] - Fuel temperature at reactor core inlet.

\[T_{o,r} \] - Fuel temperature at reactor core outlet.

\[T_{i,s} \] - Secondary salt temperature at the radiator inlet.

\[T_{o,s} \] - Secondary salt temperature at the radiator outlet.

\[T_{i,a} \] - Cooling air temperature at radiator inlet.

\[T_{o,a} \] - Cooling air temperature at radiator outlet.
Table 3

MSRE DESIGN POINT DATA AS OF 12-13-60

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reactor inlet temperature:</td>
<td>1175 °F</td>
</tr>
<tr>
<td>Reactor outlet temperature:</td>
<td>1225 °F</td>
</tr>
<tr>
<td>Mean graphite temperature: (with no fuel absorption)</td>
<td>1230 °F</td>
</tr>
<tr>
<td>Residence time in reactor:</td>
<td>7.63 sec.</td>
</tr>
<tr>
<td>Film drop from graphite to fuel:</td>
<td>Linear with power</td>
</tr>
<tr>
<td>Heat capacity of graphite:</td>
<td>0.425 BTU/°F</td>
</tr>
<tr>
<td>Prompt γ and neutron heating in graphite:</td>
<td>6% of 10 MW</td>
</tr>
<tr>
<td>Residence time in piping from reactor outlet to H. E. inlet</td>
<td>3.09 sec.</td>
</tr>
<tr>
<td>Residence time in H. E.</td>
<td>2.24 sec.</td>
</tr>
<tr>
<td>Heat capacity of metal in H. E.</td>
<td>200 BTU/°F</td>
</tr>
<tr>
<td>Avg. film drop between primary coolant and metal at D. P.</td>
<td>55.2 °F</td>
</tr>
<tr>
<td>Avg. drop in metal at D. P.</td>
<td>56.7 °F</td>
</tr>
<tr>
<td>Avg. film drop between metal and secondary coolant at D. P.</td>
<td>26.1 °F</td>
</tr>
<tr>
<td>Film drop between primary coolant and metal as function of flow: See graph, displace curve if necessary so that at 6.2 fps velocity $\Delta T = 55.2$ °F.</td>
<td></td>
</tr>
<tr>
<td>Mean secondary coolant temperature at D. P.</td>
<td>1062 °F</td>
</tr>
<tr>
<td>Residence time in piping between H. E. outlet and reactor inlet (including coolant annulus)</td>
<td>9.04 sec.</td>
</tr>
<tr>
<td>Total circulation time</td>
<td>22.0 sec.</td>
</tr>
<tr>
<td>Temperature coefficient of reactivity of graphite:</td>
<td>$-6 \times 10^{-5} \delta_{K/\text{K}^\circ F}$</td>
</tr>
<tr>
<td>Temperature coefficient of reactivity of fuel:</td>
<td>$-3.3 \times 10^{-5} \delta_{K/\text{K}^\circ F}$</td>
</tr>
<tr>
<td>Melting point of primary coolant:</td>
<td>842 °F</td>
</tr>
<tr>
<td>Melting point of secondary coolant:</td>
<td>860 °F</td>
</tr>
</tbody>
</table>
Check points:

Thermal resistances: \(\text{ft} \cdot \text{hr} \cdot ^\circ\text{F} \over \text{BTU} \)

- in primary coolant film: \(3.28 \times 10^{-4}\)
- in metal: \(3.32 \times 10^{-4}\)
- in secondary coolant film: \(1.56 \times 10^{-4}\)

Simulator data for secondary loop

- Air temperature rise in radiator: \(200 \ ^\circ\text{F}\)
- Air suction temperature: \(100 \ ^\circ\text{F}\)
- Air flow: \(166,000 \ \text{cfm}\)
 \(7.11 \times 10^5 \ \text{#/hr}\)
- Heat capacity of radiator: \(242 \ \text{BTU} \over ^\circ\text{F}\)
- Heat capacity of secondary salt: \(0.57 \ \text{BTU} \over ^\circ\text{F} \ #/\text{ft}^3\)
- Density of secondary salt: \(120 \ #/\text{ft}^3\)
- Residence times of secondary salt:
 - in primary heat exchanger: \(1.75 \ \text{sec}\)
 - in piping to radiator: \(5.20 \ \text{sec}\)
 - in radiator: \(7.14 \ \text{sec}\)
 - in piping from radiator: \(10.11 \ \text{sec}\)
 - Total: \(24.20 \ \text{sec}\)
- Residence time of air in radiator: \(0.01 \ \text{sec}\)
- Temperature differences in radiator:
 - in salt film: \(13.4 \ ^\circ\text{F}\)
 - in tube wall: \(78.4 \ ^\circ\text{F}\)
 - in air film: \(770.7 \ ^\circ\text{F}\)
\[\lambda_\phi \equiv 0.1 \left(\frac{45}{\pi} \right) \]

\[\frac{1}{\lambda_\phi} \epsilon_1 = N \left\{ \frac{a \phi - (T_0[R] - T_2[R]) - q(t)}{2 T_{SP}} \right\} + N \left\{ \left[(T_0[R] + T_2[R]) - 2 T_{SP} \right] \right\} \]

FIG. 4. GENERATOR CIRCUIT FOR \(\epsilon_1 \)

- 13 -
\[
\lambda_\text{e} \equiv 0.1 \left(f_3 \right)
\]

\[
\frac{1}{G} e_\text{e} = M \left\{ \alpha \Phi - \Phi \left(T_\text{r} - T_\text{SP} \right) - \Phi \left(T_\text{r} + T_\text{SP} \right) - 2 \right\} N
\]

FIG. 5 GENERATOR CIRCUIT FOR \(e_\text{e} \).
\[\lambda_6 \approx 0.1 \left(\frac{1}{f_s} \right) \]

\[\frac{1}{G} \varepsilon_3 = M \left[\alpha \phi - (T_x)_s - T_0 \right] - q(t) + N \left[(T_0)_R + T_i \right] - 2T_{SP} \]

FIG. 6 GENERATOR CIRCUIT FOR \(\varepsilon_3 \).
\[\lambda_6 \cong 0.1 (\frac{1}{s}) \]

\[\frac{1}{G} \epsilon_+ = M \left\{ \alpha \phi - (T_o^s - T_o^s) - q(t) \right\} + N (T_o^R - T_{sp}) \]

FIG. 7 GENERATOR CIRCUIT FOR \(\epsilon_+ \).
Figure 3. Control Signal ξ
Nuclear Power and Mean Fuel Temperature in Reactor vs. Time.
Figure 9: Control Signal,
Nuclear Power and Mean Fuel
Temp. in Reactor vs. Time

Elapsed Time from start of Transient (sec.)
Nuclear Power (mw)

Mean Fuel Temp. in Reactor (°F)

Elapsed Time from Start of Transient (sec.)
Figure II. Control Signal ϵ_ϕ
Nuclear Power and $T_{d/p}$ vs. Time.
BIBLIOGRAPHY

1. O. W. Burke, MSRE - Preliminary Analog Computer Study -
Flow Accident in Primary System, ORNL CF 60-6-110
(June 27, 1960)

O. W. Burke, MSRE - Analog Computer Simulation of a
Loss of Flow Accident in the Secondary System and a
Simulation of a Controller Used to Hold the Reactor
Power Constant at Low Power Levels, ORNL CF 60-11-20
(Nov. 4, 1960)

O. W. Burke, MSRE - An Analog Computer Simulation of
the System for Various Conditions - Progress Report
No. 1, ORNL CF 61-3-42 (March 8, 1961)
<p>| No. | Name | MSRP | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | 25 | 26 | 27 | 28 | 29 | 30 | 31 | 32 | 33 | 34 | 35 | 36 | 37 | 38 | 39 | 40 | 41 | 42 | 43 | 44 | 45 | 46 |</p>
<table>
<thead>
<tr>
<th></th>
<th>Name</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>93</td>
<td>B. S. Weaver</td>
<td>4500</td>
</tr>
<tr>
<td>94</td>
<td>B. H. Webster</td>
<td>9204-1</td>
</tr>
<tr>
<td>95</td>
<td>A. M. Weinberg</td>
<td>4500</td>
</tr>
<tr>
<td>96</td>
<td>J. H. Westsik</td>
<td>9204-1</td>
</tr>
<tr>
<td>97</td>
<td>L. V. Wilson</td>
<td>9201-3</td>
</tr>
<tr>
<td>98</td>
<td>C. E. Winters</td>
<td>4500</td>
</tr>
<tr>
<td>99</td>
<td>C. H. Wodtke</td>
<td>9204-1</td>
</tr>
<tr>
<td>100-101</td>
<td>Reactor Div. Library (2)</td>
<td>9204-1</td>
</tr>
<tr>
<td>102</td>
<td>Central Research Library</td>
<td>4500</td>
</tr>
<tr>
<td>103</td>
<td>(2)</td>
<td></td>
</tr>
<tr>
<td>104</td>
<td>Document Reference</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Library (1)</td>
<td>9711-1</td>
</tr>
<tr>
<td>105-107</td>
<td>Laboratory Records (3)</td>
<td>4500</td>
</tr>
<tr>
<td>108</td>
<td>Laboratory Records ORNL-RC</td>
<td>4500</td>
</tr>
</tbody>
</table>