To: C. E. Bettis
From: Stanley Cantor
Subject: Estimated Viscosities of BeF$_2$-Containing Salts Suggested as MSBR Coolants

Recently R. E. Thoma (MSR 67-76, memo of September 21, 1967) has proposed three BeF$_2$-containing salt mixtures as possible MSBR coolants. Estimates of the viscosities of two of these salts are given in the table below; the third mixture (57-43 mole % NaF-BeF$_2$) was not considered because it possessed the highest liquidus temperature and highest viscosities.

<table>
<thead>
<tr>
<th>Mixture (mole %)</th>
<th>Viscosity Equation</th>
<th>Viscosity (Cp) at 700°F</th>
<th>Viscosity (Cp) at 988°F</th>
</tr>
</thead>
<tbody>
<tr>
<td>LiF 31.5 NaF 31 BeF$_2$ 37.5</td>
<td>$\eta(Cp) = 0.0745 e^{4540/T(°K)}$</td>
<td>86.6</td>
<td>21.1</td>
</tr>
<tr>
<td>LiF 5 NaF 53 BeF$_2$ 42</td>
<td>$\eta(Cp) = 0.0465 e^{5090/T(°K)}$</td>
<td>133</td>
<td>26.2</td>
</tr>
</tbody>
</table>

Cp \equiv centipoise

The viscosity-temperature equations given in the table were derived empirically from two sources:

(a) data obtained at ORNL on the LiF-BeF$_2$ system (MSRP Semiann. Progr. Rept. Feb. 28, 1965, ORNL-3812, p. 145),

(b) data obtained at Mound Laboratory on the NaF-BeF$_2$ system (Blanke et al, MLM-1079, Sept. 1958).

The viscosities predicted from these two equations are probably accurate to within \pm 25%.

Stanley Cantor

CC: Distribution
Distribution

E. S. Bettis
E. G. Bohlmann
R. B. Briggs
D. E. Ferguson
W. R. Grimes
P. N. Haubenreich
P. R. Kasten
H. E. McCoy
H. F. McDuffie
A. M. Perry
M. W. Rosenthal (3)
Dunlap Scott
R. E. Thoma
M. E. Whatley
J. C. White