Learn Nuclear Engineering from MIT for free!
Even with an initial engineering background, and a mechanical engineering background at that, I was really surprised how important formal education in nuclear engineering is. I had thought, when I first began learning about thorium and fluoride reactors several years ago, that doing some overall reactor design calculations would be as simple as getting a nuclear engineering text, parsing through it for the relevant equations, and doing some quick and simple sizing.
How wrong I was!
Nuclear engineering turned out to be devilishly difficult to learn. Now most folks are smarter than I am, and will probably have less trouble, but since I began my formal education in nuclear engineering in the fall of 2003, every class has seemed like it would just about kill me or take my little brain to the limit of where it could go. But six classes later, I’m still alive, still kicking, and have a lot more perspective on the problem (and I even have a decent GPA so far!)
Nuclear reactors are very difficult to design because of the basic behavior of neutrons during fission. They are borne at high energies, and then they have to slow down through moderation. Modeling this is extremely complicated because of what’s known as “resonances” in heavy materials like uranium, thorium, or tungsten. Resonances are when a material has a real predilection for a neutron of a certain energy. It REALLY wants those particular energy neutrons and it gobbles them up like Pac-Man. Your poor little neutrons are trying to slow down and moderate and all the while these nuclides are just waiting to eat them, like the monsters who gobbled up Ulysses’s sailors as they sailed past them.
Just modeling the real behavior of neutron moderation in the presence of resonance-absorbing nuclides is enough to scare you to death, but then you get to all the issues of neutron transport–the Boltzmann Transport Equation. Like the Navier-Stokes equations for fluid flow, the BTE is a perfect model of what happens in a reactor. And just like Navier-Stokes, you can forget about ever solving it. The best you can do is apply increasing levels of simplifying assumptions to the BTE, and try to get to a point where solution is possible. Problem is, each simplifying assumption removes more and more of the value of your eventual solution.
Therein is the “art” of neutronics–like Kenny Rogers “Gambler” you gotta know when you can simplify and know when you can’t simplify. And know when to run! It gives me a whole lot more respect for those early nuclear pioneers who had to do all this work without computers!
What does all this have to do with MIT? Well, I just read this week that MIT is going to the effort to put all their classes online, and it occurs to me that some enterprising person who wanted to get a decent understanding of the realities of nuclear engineering could “take” these classes on line and learn a thing or two. It would take a lot of determination and personal initiative, but it could save you a lot of money.
MIT Nuclear Science and Engineering Open Course Ware
It’s too late for me–I’m going to finish my MS degree in nuclear engineering at the University of Tennessee (who I’d like to commend for offering an excellent distance learning program!) but some of you young folks might like to think about it!
Continue discussing this topic on the Energy From Thorium Discussion Forum